III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

OPERATING SYSTEMS (INFORMATION TECHNOLOGY)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
	UNIT-I					
1	a)	Describe the concept of system calls and	L2	CO1	7 M	
		categories of system calls. Explain how the				
		fork () system call operates.				
	b)	Describe the many types of operating	L2	CO1	7 M	
		systems supported by single, multi, and				
		clustered computer systems.				
		OR		_		
2	a)	Discuss the term operating system. Mention	L2	CO1	7 M	
		the command interpreters and describe it.				
	b)	Explain the operating system services.	L2	CO1	7 M	
		UNIT-II				
3	a)	Consider a scenario where there are three	L3	CO3	7 M	
		CPU-intensive operations that take 20, 60,				
		and 30 time units, respectively, and arrive at				
		times 0, 2, and 6. If the operating system				
		uses a shortest remaining time first				
		scheduling technique, how many context				
		changes are required? Do not count the				
		context switches at time zero and at the end.				

	b)	With the use of a diagram, go over the	L3	CO3	7 M			
	0)	process transition diagram and describe the	20	000	/ 1/1			
		various scheduler kinds. The following jobs,						
		assuming they arrive for processing at the						
		times mentioned, will each take the						
		specified length of time to						
		complete. Determine the typical turnaround						
		time and typical waiting time for each job						
		using FCFS and SJF techniques.						
		Jobs(1,2,3), Arrival Time(1,5,6), Burst						
		Time(8,2,4).						
		OR		<u> </u>				
4	a)	Explain the process control block and its	L2	CO1	4 M			
		main functions. Also describe the						
		components of it.						
	b)	Describe the difference between scheduling	L3	CO3	10 M			
		algorithms - FCFS Scheduling, Shortest-						
		Job-First Scheduling, Priority Scheduling						
		and Round-Robin Scheduling.						
		UNIT-III						
5	a)	Explain the prerequisites for a solution to	L3	CO2	7 M			
		the critical section problem and the critical						
		section problem in action. Use this strategy						
		to address the issue facing readers and						
		writers problem.						
	b)	Elucidate binary semaphore. Implement	L3	CO2	7 M			
		wait and signal for binary semaphores						
		without busy wait. Use binary semaphores						
		to demonstrate how counting semaphores						
		are implemented.						
OR								

() 01 (1) (000 7)								
6	a)	Show the usage of Safety and Resource -	L3	CO3	7 M			
		Request Banker's algorithms for deadlock						
		avoidance.						
	b)	Explain the mutual exclusion problem in	L3	CO2	7 M			
		relation to concurrent processes using an						
		appropriate example. Describe the producer-						
		consumer issue and provide a semaphore-						
		based solution.						
UNIT-IV								
7	a)	The page reference string 0, 1, 2, 3, 0, 1, 2,	L3	CO3	7 M			
		3, 4,5, 6, 7 is an example. How many page						
		faults would the following replacement						
		methods experience under the assumption of						
		demand paging with three frames?						
		Employing LRU replacement, FIFO						
		replacement, and optimal replacement.						
	b)	Differentiate paging with segmentation with	L4	CO4	7 M			
		respect to how much memory the address						
		translation structures require to convert						
		virtual addresses to physical addresses.						
OR								
8	a)	Describe the fundamentals of FIFO page	L3	CO3	7 M			
		replacement and the benefits of using it.						
	b)	Differentiate optimal page replacement and	L3	CO3	7 M			
		LRU page replacement algorithms with an						
		example.						
UNIT-V								
9	a)	Describe different disk scheduling	L3	CO3	10 M			
		techniques in detail using an example.						
		i) FCFS ii) SSTF iii) SCAN iv) LOOK.						
	b)	Explain the file-system structure.	L2	CO1	4 M			
OR								

10	a)	Determine the goal of file concept and its	L2	CO1	4 M
		key components.			
	b)	Elaborate the file system implementation	L2	CO1	10 M
		issues in OS. Also explain hash table and its			
		disadvantages.			